Q4. Let \(f(x, y) = e^{xy} \sin(xy) \)
(a) In what direction(s), starting at \((0, \pi/2)\), is \(f \) increasing the fastest?
(b) In what direction(s), starting at \((0, \pi/2)\), is \(f \) changing at 50% of its maximum rate?

(a) Get the gradient of \(f \): \(\nabla f = (ye^{xy} \sin(xy) + \cos(xy)e^{xy}, xe^{xy} \sin(xy) + \cos(xy)e^{xy}) \)

\(\nabla f(0, \pi/2) = (\pi/2, 0) \). Because the gradient direction is the direction of maximal increase.

(b) Rate of change in direction \(u \) is the directional derivative \(D_u f(x) = \nabla f(x) \cdot u \).

Rate of the fastest increase in the given \(f \) is \(\|\nabla f(0, \pi/2)\| = \| (\pi/2, 0) \| = \pi/2 \)

\(\nabla f(0, \pi/2) \cdot u = \frac{\pi}{2} \cdot 0.50 = \frac{\pi}{4} \)

* \(u \) is unit vector in the required direction.

* When \(u \) makes an angle of \(\pm \frac{\pi}{3} \) with the \(x \)-axis.

\(\cos \theta = \frac{1}{2} \Rightarrow \theta = \pm \frac{\pi}{3} \Rightarrow u = \left(\frac{1}{2}, \pm \frac{\sqrt{3}}{2} \right) \)

Q5. Let \(f: \mathbb{R}^3 \rightarrow \mathbb{R}^2 \) be given by \(f(x, y, z) = (x^2y, y^2z) \) and let \(g: \mathbb{R}^2 \rightarrow \mathbb{R}^5 \) be given by \(g(x, y) = (xy, 2x^2, x+y, -x, y) \). Find \(Df \) and \(Dg \) and find \(D(g \circ f) \) using the Chain Rule.

\(Df = \begin{pmatrix} 2xy & x^2 & 0 \\ 0 & 2z & 2yz \end{pmatrix} \quad Dg = \begin{pmatrix} y & x \\ 4x & 0 \\ 1 & 1 \\ 0 & 1 \\ 1 & 0 \end{pmatrix} \)

\(Dg(f) = Dg(x^2y, y^2z) = \begin{pmatrix} y^2 & x^2y & 0 \\ 4xy & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \)

\(D(g \circ f) = Dg(f) Df = \begin{pmatrix} y^2 & x^2y & 0 \\ 4xy & 0 & 2yz \end{pmatrix} \begin{pmatrix} 2xy & x^2 & 0 \\ 0 & 2z & 2yz \end{pmatrix} = \begin{pmatrix} 2x^2y^2x & 2x^2y^2 & 2x^2yz \\ 8x^3y^2 & 4x^4y & 0 \\ 2xy & x^2z & 2yz \\ -2xy & -x^2 & 0 \\ 0 & 2z & 2yz \end{pmatrix} \)
Q.6. Let \(f : \mathbb{R}^2 \to \mathbb{R} \) be given by \(f(x, y) = 1 - (x^2 + y^2)^2 \)

(a) Characterize and sketch several level curves of \(f \) being careful to indicate where \(f \) is zero, positive, negative and not defined. What is the range of \(f \)?

(b) Find the \(CPs \) of \(f \) and determine the local and global extreme of \(f \) or explain why such extrema do not exist.

(c) Find the equation of the tangent plane to the graph of \(f \) at \((1,1,f(1,1))\)?

\[
\begin{align*}
\text{if } & \quad 0 < C < 1, \quad \text{cicles centered at } (0,0) \text{ with radius } \sqrt{1 - \sqrt{1 - C}}, \\
\text{if } & \quad C = 0, \quad \text{point } (0,0), \quad x^2 + y^2 = 1, \\
\text{if } & \quad C < 0, \quad \text{cicles centered at } (0,0) \text{ with radius } \sqrt{1 - \sqrt{1 - C}}.
\end{align*}
\]

(b)
\[
\begin{align*}
f_x &= -2(x^2 + y^2 - 1)(2x) = -4x(x^2 + y^2 - 1) = 0, \quad x = 0 \quad \text{or} \quad x^2 + y^2 = 1, \\
f_y &= -2(x^2 + y^2 - 1)(2y) = -4y(x^2 + y^2 - 1) = 0, \quad y = 0 \quad \text{or} \quad x^2 + y^2 = 1.
\end{align*}
\]

All points on the circle \(x^2 + y^2 = 1 \) and the point \((0,0)\) are critical.

From (a), there is a local and global maximum of 1 on the circle \(x^2 + y^2 = 1 \) and a local minimum of 0 at \((0,0)\).

There is no global minimum as \(f(x,y) \to -\infty \) as \(x,y \to \infty \).

(c) The tangent plane is
\[
z = f(1,1) + f_x(1,1)(x-1) + f_y(1,1)(y-1)
\]
\[
= 0 - 4(x-1) - 4(y-1)
\]
\[
= -4x + 4 - 4y + 4
\]
\[
= -4x - 4y + 8 \quad \text{or} \quad 4x + 4y + z = 8.
\]

Tangent plane eq. \(z = f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b) \).
Q7. Let \(f(x,y) = 2x^4 - xy^2 + 2y^2 \). Find all the critical points of \(f \). For each critical point, determine if that point is a local min, max or saddle.

\(f(x,y) \) is polynomial so it is differentiable for all \((x,y) \in \mathbb{R}^2 \). (CPs when \(\nabla f = 0 \))

\[
\begin{align*}
 f_x &= 8x^3 - y^2 = 0 \\
 f_y &= -2xy + 4y = 0 \\
 y &= 0 \text{ or } x = 2 \\
 x &= 2, \quad y^2 = 64 \\
 y &= \pm 8.
\end{align*}
\]

\[\therefore \text{CPs } (0,0), (2,8), (2,-8)\]

The Hessian matrix is \(H_f = \begin{pmatrix} 24x^2 & -2 \\ -2y & -2x + 4 \end{pmatrix} \)

\[H_f(0,0) = \begin{pmatrix} 0 & 0 \\ 0 & 4 \end{pmatrix}, \quad \det H_f(0,0) = 0 \text{ so this is degenerate case.} \]

\[\text{Since } f(x,y) > 0 \text{ for } (x,y) \text{ near } (0,0), \text{ there is a local minimum at } (0,0).\]

\[H_f(2,8) = \begin{pmatrix} 96 & -16 \\ -16 & 0 \end{pmatrix}, \quad \det H_f(2,8) = -16 \times 16 < 0 \therefore \text{saddle}\]

\[H_f(2,-8) = \begin{pmatrix} 96 & 16 \\ 16 & 0 \end{pmatrix}, \quad \det H_f(2,-8) = -16 \times 16 < 0 \therefore \text{saddle}.\]

Q8. Let \(f(x,y,z) = x + 2y + 3z \). Find the global extrema of \(f \) on the intersection of the surfaces \(x^2 + y^2 = 1 \) and \(x + y + z = 1 \).

Since \(f \) is a polynomial, \(f \) is continuous on \(\mathbb{R}^3 \). The curve of intersection is an ellipse, it is compact in \(\mathbb{R}^3 \). Then, the EVT ensures \(f \) will attain both global max and min on ellipse.

Constraints \(g_1(x,y,z) = x^2 + y^2 - 1 \), \(g_2(x,y,z) = x + y + z - 1 \)

\[\begin{align*}
 h(x,y,z,\lambda,\mu) &= x + 2y + 3z - 2(x^2 + y^2 - 1) - \lambda(x+y+z-1) \\
 h_x &= 1 - 2x\lambda - y = 0 \\
 h_y &= 2 - 2y\lambda + 4y = 0 \\
 h_z &= 3 - \lambda = 0 \\
 h_\lambda &= -(x^2 + y^2 - 1) = 0 \\
 h_\mu &= -(x + y + z - 1) = 0
\end{align*}\]

\[\therefore (\pm \frac{2}{\sqrt{29}}, \pm \frac{5}{\sqrt{29}}, 1 \pm \frac{7}{\sqrt{29}})\]

\[f(-, +, +) = 3 + \sqrt{29} \quad \text{(max)} \]

\[f(+, -, -) = 3 - \sqrt{29} \quad \text{(min)}\]
Q9. (a) Compute \(\iint_D (1 + 2y \cos x) \, dA \), where \(D \) is the region bounded by the curve \(y = \sqrt{x} \) and the lines \(x = 0 \) and \(y = 3 \).

(b) Rewrite the integral \(\int_0^1 \int_0^x f(x, y) \, dy \, dx \) with the order of integration reversed.

(c) Give an integral in polar coordinates \((r, \theta)\) which is equivalent to \(\int_0^4 \int_3 \sqrt{25-x^2} \, dy \, dx \)

\[
\iint_D (1 + 2y \cos x) \, dA = \int_0^3 \int_0^x (1 + 2y \cos x) \, dx \, dy \\
= \int_0^3 \left[x + 2y \sin x \right]_0^x \, dy = \int_0^3 y^2 + 2y \sin y^2 \, dy \\
= \left[\frac{y^3}{3} - \cos y^2 \right]_0^3 = 9 \cos 9 + 1 = 10 - \cos 9.
\]

\[
\int_0^1 \int_0^x f(x, y) \, dy \, dx = \int_0^{\sqrt{25}} \int_0^1 f(x, y) \, dx \, dy + \int_0^3 \int_{\sqrt{25}}^{1} f(x, y) \, dx \, dy
\]

\[
\int_0^4 \int_3 \sqrt{25-x^2} \, dy \, dx = \int_0^{\pi/2} \int_0^{\arccsc(\frac{5}{3})} r \, dr \, d\theta
\]

Q10. Sketch the curve given by the polar equation \(r = 1 + 2 \cos(2\theta) \).

\[r = 0 \rightarrow 1 + 2 \cos(2\theta) = 0 \]

\[\cos(2\theta) = -\frac{1}{2} \Rightarrow \theta = \frac{\pi}{3}, \frac{2\pi}{3}, \frac{4\pi}{3}, \frac{5\pi}{3} \]

\[\therefore \text{graph will be tangent to } \theta = \frac{\pi}{3}, \theta = \frac{2\pi}{3} \]

\[\theta = \frac{4\pi}{3}, \theta = \frac{5\pi}{3} \]

\[\begin{array}{c|cc|cc|cc|cc|cc}
\theta & 0 & \pi/6 & \pi/3 & 2\pi/3 & \pi & 4\pi/3 & 3\pi/2 & 5\pi/3 & 2\pi \\
\theta & 3 & 0 & -1 & 0 & 3 & 0 & -1 & 0 & 3
\end{array} \]
Q11. Find, in terms of \(a \), the volume of the first octant region bounded above by the plane \(z = x + y \) and bounded on one side by the cylinder \(x^2 + y^2 = a^2 \) where \(a > 0 \).

Use cylindrical coordinates.

\[
\int_B \, dV = \int_0^{\pi/2} \int_0^a \int_0^{\sqrt{a^2-r^2}} r \, dz \, dr \, d\theta = \int_0^{\pi/2} (\sin \theta) \, d\theta \int_0^a \frac{r^3}{3} \, dr = \frac{a^3}{3} \left[\sin \theta - \frac{\theta}{2} \right]_0^{\pi/2} = \frac{2a^3}{3}
\]

Q12. Let \(B \) be the interior of the unit sphere, \(x^2 + y^2 + z^2 = 1 \).

(a) Evaluate \(\int_B (x^2 + y^2 + z^2) \, dV \).

(b) Explain why this should or should not give the same answer as \(\int_B 1 \, dV \).

(a) Using spherical coordinates:

\[
\int_B (x^2 + y^2 + z^2) \, dV = \int_0^{\pi} \int_0^{2\pi} \int_0^{1} \rho^2 \sin \phi \, d\rho \, d\phi \, d\theta = \frac{4\pi}{3}
\]

(b) Not the same since \(x^2 + y^2 + z^2 = 1 \) only on the surface, not the interior.

Q13. Use a change of variable to evaluate \(\iint_D xy \, dA \), where \(D \) is the first quadrant region bounded by \(xy = 1 \), \(xy = 4 \), \(y = x^2 \) and \(y = 3x^2 \).

\[
u = \frac{y}{x^3}, \quad v = xy. \quad \text{then} \quad 1 \leq u \leq 3, \quad 1 \leq v \leq 4.
\]

\[
\iint_D xy \, dA = \int_0^1 \int_0^4 \frac{v}{u^2} \, dv \, du = \frac{1}{3} \int_0^3 \left(\frac{v}{u} \right)^4 \, du = \frac{1}{3} \int_0^3 \frac{15}{u} \, du = \frac{15}{6} \ln u \bigg|_1^3 = \frac{5}{2} \ln 3.
\]
Evaluate \(\iint_S \frac{dx \, dy \, dz}{(x^2+y^2+z^2)^{3/2}} \), where \(S \) is the two spheres \(x^2+y^2+z^2 = a^2 \) and \(x^2+y^2+z^2 = b^2 \), where \(0 < a < b \).

Use spherical polar coordinates: \((p, \theta, \phi)\).

For the two spheres, \(p = a \) and \(p = b \), \(0 \leq \theta \leq 2\pi \), \(0 \leq \phi \leq \pi \).

\[
\int_a^b \int_0^{2\pi} \int_0^\pi \frac{p^2 \sin \phi}{p^3} \, d\phi \, d\theta \, dp = \int_a^b \left[-\frac{1}{p^2} \cos \phi \right]_0^\pi \, d\theta \, dp
\]

\[
= \int_a^b \frac{1}{p} \int_0^{2\pi} \cos \phi \, d\phi \, dp = 4\pi \int_a^b \frac{1}{p} \, dp = 4\pi \ln \frac{b}{a}
\]

Evaluate \(\int_0^1 \int_0^e \frac{x}{\ln x} \, dx \, dy \)

\(e^y \leq x \leq e, \ 0 \leq y \leq 1 \)

\(1 \leq x \leq e, \ 0 \leq y \leq \ln x \)

\[
\int_0^1 \int_0^e \frac{x}{\ln x} \, dx \, dy = \int_0^e \int_0^1 \frac{x}{\ln x} \, dy \, dx = \int_0^e \left[\frac{x}{\ln x} \right]_0^1 \, dx
\]

\[
= \int_0^e x \, dx = \left[\frac{x^2}{2} \right]_1^e = \frac{1}{2} (e^2 - 1)
\]